home *** CD-ROM | disk | FTP | other *** search
- /***
- *
- * Copyright (c) 1998, Valve LLC. All rights reserved.
- *
- * This product contains software technology licensed from Id
- * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
- * All Rights Reserved.
- *
- ****/
-
- // mathlib.c -- math primitives
-
- #pragma warning( disable : 4244 )
- #pragma warning( disable : 4237 )
- #pragma warning( disable : 4305 )
-
-
- /* #include "cmdlib.h" */
- #ifndef true
- #define true 1
- #endif /* true */
- #ifndef false
- #define false 0
- #endif /* false */
-
- #include "mathlib.h"
-
- vec3_t vec3_origin = {0,0,0};
-
-
- double VectorLength(vec3_t v)
- {
- int i;
- double length;
-
- length = 0;
- for (i=0 ; i< 3 ; i++)
- length += v[i]*v[i];
- length = sqrt (length); // FIXME
-
- return length;
- }
-
-
- int VectorCompare (vec3_t v1, vec3_t v2)
- {
- int i;
-
- for (i=0 ; i<3 ; i++)
- if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
- return false;
-
- return true;
- }
-
- vec_t Q_rint (vec_t in)
- {
- return floor (in + 0.5);
- }
-
- void VectorMA (vec3_t va, double scale, vec3_t vb, vec3_t vc)
- {
- vc[0] = va[0] + scale*vb[0];
- vc[1] = va[1] + scale*vb[1];
- vc[2] = va[2] + scale*vb[2];
- }
-
- void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
- {
- cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
- cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
- cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
- }
-
- vec_t _DotProduct (vec3_t v1, vec3_t v2)
- {
- return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
- }
-
- void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
- {
- out[0] = va[0]-vb[0];
- out[1] = va[1]-vb[1];
- out[2] = va[2]-vb[2];
- }
-
- void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
- {
- out[0] = va[0]+vb[0];
- out[1] = va[1]+vb[1];
- out[2] = va[2]+vb[2];
- }
-
- void _VectorCopy (vec3_t in, vec3_t out)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- }
-
- void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
- {
- out[0] = v[0] * scale;
- out[1] = v[1] * scale;
- out[2] = v[2] * scale;
- }
-
- vec_t VectorNormalize (vec3_t v)
- {
- int i;
- double length;
-
- if ( fabs(v[1] - 0.000215956) < 0.0001)
- i=1;
-
- length = 0;
- for (i=0 ; i< 3 ; i++)
- length += v[i]*v[i];
- length = sqrt (length);
- if (length == 0)
- return 0;
-
- for (i=0 ; i< 3 ; i++)
- v[i] /= length;
-
- return length;
- }
-
- void VectorInverse (vec3_t v)
- {
- v[0] = -v[0];
- v[1] = -v[1];
- v[2] = -v[2];
- }
-
- void ClearBounds (vec3_t mins, vec3_t maxs)
- {
- mins[0] = mins[1] = mins[2] = 99999;
- maxs[0] = maxs[1] = maxs[2] = -99999;
- }
-
- void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
- {
- int i;
- vec_t val;
-
- for (i=0 ; i<3 ; i++)
- {
- val = v[i];
- if (val < mins[i])
- mins[i] = val;
- if (val > maxs[i])
- maxs[i] = val;
- }
- }
-
- void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
- {
- float angle;
- float sr, sp, sy, cr, cp, cy;
-
- angle = angles[2] * (Q_PI*2 / 360);
- sy = sin(angle);
- cy = cos(angle);
- angle = angles[1] * (Q_PI*2 / 360);
- sp = sin(angle);
- cp = cos(angle);
- angle = angles[0] * (Q_PI*2 / 360);
- sr = sin(angle);
- cr = cos(angle);
-
- // matrix = (Z * Y) * X
- matrix[0][0] = cp*cy;
- matrix[1][0] = cp*sy;
- matrix[2][0] = -sp;
- matrix[0][1] = sr*sp*cy+cr*-sy;
- matrix[1][1] = sr*sp*sy+cr*cy;
- matrix[2][1] = sr*cp;
- matrix[0][2] = (cr*sp*cy+-sr*-sy);
- matrix[1][2] = (cr*sp*sy+-sr*cy);
- matrix[2][2] = cr*cp;
- matrix[0][3] = 0.0;
- matrix[1][3] = 0.0;
- matrix[2][3] = 0.0;
- }
-
- void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
- {
- float angle;
- float sr, sp, sy, cr, cp, cy;
-
- angle = angles[2] * (Q_PI*2 / 360);
- sy = sin(angle);
- cy = cos(angle);
- angle = angles[1] * (Q_PI*2 / 360);
- sp = sin(angle);
- cp = cos(angle);
- angle = angles[0] * (Q_PI*2 / 360);
- sr = sin(angle);
- cr = cos(angle);
-
- // matrix = (Z * Y) * X
- matrix[0][0] = cp*cy;
- matrix[0][1] = cp*sy;
- matrix[0][2] = -sp;
- matrix[1][0] = sr*sp*cy+cr*-sy;
- matrix[1][1] = sr*sp*sy+cr*cy;
- matrix[1][2] = sr*cp;
- matrix[2][0] = (cr*sp*cy+-sr*-sy);
- matrix[2][1] = (cr*sp*sy+-sr*cy);
- matrix[2][2] = cr*cp;
- matrix[0][3] = 0.0;
- matrix[1][3] = 0.0;
- matrix[2][3] = 0.0;
- }
-
- void R_ConcatTransforms (const float in1[3][4], const float in2[3][4], float out[3][4])
- {
- out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
- in1[0][2] * in2[2][0];
- out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
- in1[0][2] * in2[2][1];
- out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
- in1[0][2] * in2[2][2];
- out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
- in1[0][2] * in2[2][3] + in1[0][3];
- out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
- in1[1][2] * in2[2][0];
- out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
- in1[1][2] * in2[2][1];
- out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
- in1[1][2] * in2[2][2];
- out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
- in1[1][2] * in2[2][3] + in1[1][3];
- out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
- in1[2][2] * in2[2][0];
- out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
- in1[2][2] * in2[2][1];
- out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
- in1[2][2] * in2[2][2];
- out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
- in1[2][2] * in2[2][3] + in1[2][3];
- }
-
-
-
- void VectorRotate (const vec3_t in1, const float in2[3][4], vec3_t out)
- {
- out[0] = DotProduct(in1, in2[0]);
- out[1] = DotProduct(in1, in2[1]);
- out[2] = DotProduct(in1, in2[2]);
- }
-
-
- // rotate by the inverse of the matrix
- void VectorIRotate (const vec3_t in1, const float in2[3][4], vec3_t out)
- {
- out[0] = in1[0]*in2[0][0] + in1[1]*in2[1][0] + in1[2]*in2[2][0];
- out[1] = in1[0]*in2[0][1] + in1[1]*in2[1][1] + in1[2]*in2[2][1];
- out[2] = in1[0]*in2[0][2] + in1[1]*in2[1][2] + in1[2]*in2[2][2];
- }
-
-
- void VectorTransform (const vec3_t in1, const float in2[3][4], vec3_t out)
- {
- out[0] = DotProduct(in1, in2[0]) + in2[0][3];
- out[1] = DotProduct(in1, in2[1]) + in2[1][3];
- out[2] = DotProduct(in1, in2[2]) + in2[2][3];
- }
-
-
-
- void AngleQuaternion( const vec3_t angles, vec4_t quaternion )
- {
- float angle;
- float sr, sp, sy, cr, cp, cy;
-
- // FIXME: rescale the inputs to 1/2 angle
- angle = angles[2] * 0.5;
- sy = sin(angle);
- cy = cos(angle);
- angle = angles[1] * 0.5;
- sp = sin(angle);
- cp = cos(angle);
- angle = angles[0] * 0.5;
- sr = sin(angle);
- cr = cos(angle);
-
- quaternion[0] = sr*cp*cy-cr*sp*sy; // X
- quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
- quaternion[2] = cr*cp*sy-sr*sp*cy; // Z
- quaternion[3] = cr*cp*cy+sr*sp*sy; // W
- }
-
- void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] )
- {
-
- matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2];
- matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2];
- matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1];
-
- matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2];
- matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2];
- matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0];
-
- matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1];
- matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0];
- matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1];
- }
-
- void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt )
- {
- int i;
- float omega, cosom, sinom, sclp, sclq;
-
- // decide if one of the quaternions is backwards
- float a = 0;
- float b = 0;
- for (i = 0; i < 4; i++) {
- a += (p[i]-q[i])*(p[i]-q[i]);
- b += (p[i]+q[i])*(p[i]+q[i]);
- }
- if (a > b) {
- for (i = 0; i < 4; i++) {
- q[i] = -q[i];
- }
- }
-
- cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
-
- if ((1.0 + cosom) > 0.00000001) {
- if ((1.0 - cosom) > 0.00000001) {
- omega = acos( cosom );
- sinom = sin( omega );
- sclp = sin( (1.0 - t)*omega) / sinom;
- sclq = sin( t*omega ) / sinom;
- }
- else {
- sclp = 1.0 - t;
- sclq = t;
- }
- for (i = 0; i < 4; i++) {
- qt[i] = sclp * p[i] + sclq * q[i];
- }
- }
- else {
- qt[0] = -p[1];
- qt[1] = p[0];
- qt[2] = -p[3];
- qt[3] = p[2];
- sclp = sin( (1.0 - t) * 0.5 * Q_PI);
- sclq = sin( t * 0.5 * Q_PI);
- for (i = 0; i < 3; i++) {
- qt[i] = sclp * p[i] + sclq * qt[i];
- }
- }
- }
-
-
-